Cross-Section Heteroskedasticity and Time-Wise AutoregressionIn the previous example, inspection of the OLS estimated residuals found evidence for heteroskedasticity across firms and autocorrelation within firms. The generalized least squares (GLS) method makes use of this information by incorporating a general error covariance matrix in the estimation procedure. The estimation method is described in Parks [1967]. Further discussion is in Kmenta [1986, Section 12.2, pp. 616-625] and Greene [2000, Chapter 15]. The The SHAZAM commands
(filename:
The SHAZAM output can be viewed. The first two model estimations assume serially uncorrelated errors
with the The first two columns of the table below give the parameter estimates and standard errors obtained from the estimation with cross-section heteroskedasticity (see the FGLS column in Greene [2000, Table 15.1, p. 598]). The third and fourth columns give the parameter estimates and standard errors obtained from the estimation that incorporated both cross-section heteroskedasticity and contemporaneous correlation (see the FGLS row in Greene [2000, Table 15.2, p. 602]).
The final estimation results listed on the SHAZAM output recognize a different AR(1) error process for each firm. In addition, firm dummy variables are included to allow for differential firm intercepts. The results are summarized in the table below.
The above results reveal the variation in the firm intercepts. As a goodness of fit measure SHAZAM reports an R-square measure developed by Buse [1973]. Buse discusses that GLS can be viewed as a form of weighted least squares. A "generalized R-square" measure is appropriate for this situation.
[SHAZAM Guide home]
SHAZAM output|_SAMPLE 1 20
|_READ(FIRM1.txt) YEAR IGM FGM CGM ICHR FCHR CCHR / SKIPLINES=1
UNIT 88 IS NOW ASSIGNED TO: FIRM1.txt
7 VARIABLES AND 20 OBSERVATIONS STARTING AT OBS 1
|_READ(FIRM2.txt) YEAR IGE FGE CGE IWH FWH CWH / SKIPLINES=1
UNIT 88 IS NOW ASSIGNED TO: FIRM2.txt
7 VARIABLES AND 20 OBSERVATIONS STARTING AT OBS 1
|_READ(FIRM3.txt) YEAR IUS FUS CUS / SKIPLINES=1
UNIT 88 IS NOW ASSIGNED TO: FIRM3.txt
4 VARIABLES AND 20 OBSERVATIONS STARTING AT OBS 1
|_* Stack the data
|_MATRIX I=(IGM'|ICHR'|IGE'|IWH'|IUS')'
|_MATRIX F=(FGM'|FCHR'|FGE'|FWH'|FUS')'
|_MATRIX C=(CGM'|CCHR'|CGE'|CWH'|CUS')'
|_SAMPLE 1 100
|_* Assume that observations are uncorrelated across time.
|_POOL I F C / NCROSS=5 RHO=0 DN NOMULSIGSQ
POOLED CROSS-SECTION TIME-SERIES ESTIMATION
100 TOTAL OBSERVATIONS
5 CROSS-SECTIONS
20 TIME-PERIODS
DEPENDENT VARIABLE = I
THE DN OPTION IS IN EFFECT
MODEL ASSUMPTIONS:
SAME FIXED RHO FOR EACH CROSS-SECTION= 0.0000
DIAGONAL PHI MATRIX
OLS COEFFICIENTS
0.10509 0.30537 -48.030
LM TEST FOR CROSS-SECTION HETEROSKEDASTICITY 46.630
CHI-SQUARE WITH 4 D.F. P-VALUE= 0.00000
BREUSCH-PAGAN LM TEST FOR DIAGONAL COVARIANCE MATRIX 50.682
CHI-SQUARE WITH 10 D.F. P-VALUE= 0.00000
VARIANCES (DIAGONAL OF PHI MATRIX)
9410.9 755.85 34288. 633.42 33456.
PHI MATRIX
9410.9
-168.05 755.85
-1916.0 -4163.3 34288.
-1129.3 -80.382 2259.3 633.42
258.50 4035.9 -27898. -1170.7 33456.
BUSE [1973] R-SQUARE = 0.9014 BUSE RAW-MOMENT R-SQUARE = 0.9326
VARIANCE OF THE ESTIMATE-SIGMA**2 = 0.94690
STANDARD ERROR OF THE ESTIMATE-SIGMA = 0.97309
SUM OF SQUARED ERRORS-SSE= 94.690
MEAN OF DEPENDENT VARIABLE = 248.96
LOG OF THE LIKELIHOOD FUNCTION = -570.057
ASYMPTOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
NAME COEFFICIENT ERROR -------- P-VALUE CORR. COEFFICIENT AT MEANS
F 0.94991E-01 0.7409E-02 12.82 0.000 0.793 0.5038 0.7334
C 0.33781 0.3023E-01 11.18 0.000 0.750 0.4686 0.4221
CONSTANT -36.254 6.124 -5.920 0.000-0.515 0.0000 -0.1456
|_* Assume cross-section correlation
|_POOL I F C / NCROSS=5 RHO=0 DN NOMULSIGSQ FULL
POOLED CROSS-SECTION TIME-SERIES ESTIMATION
100 TOTAL OBSERVATIONS
5 CROSS-SECTIONS
20 TIME-PERIODS
DEPENDENT VARIABLE = I
THE DN OPTION IS IN EFFECT
MODEL ASSUMPTIONS:
SAME FIXED RHO FOR EACH CROSS-SECTION= 0.0000
FULL PHI MATRIX - CROSS-SECTION CORRELATION
OLS COEFFICIENTS
0.10509 0.30537 -48.030
LM TEST FOR CROSS-SECTION HETEROSKEDASTICITY 46.630
CHI-SQUARE WITH 4 D.F. P-VALUE= 0.00000
BREUSCH-PAGAN LM TEST FOR DIAGONAL COVARIANCE MATRIX 50.682
CHI-SQUARE WITH 10 D.F. P-VALUE= 0.00000
VARIANCES (DIAGONAL OF PHI MATRIX)
9410.9 755.85 34288. 633.42 33456.
PHI MATRIX
9410.9
-168.05 755.85
-1916.0 -4163.3 34288.
-1129.3 -80.382 2259.3 633.42
258.50 4035.9 -27898. -1170.7 33456.
BUSE [1973] R-SQUARE = 0.9302 BUSE RAW-MOMENT R-SQUARE = 0.9662
VARIANCE OF THE ESTIMATE-SIGMA**2 = 0.96474
STANDARD ERROR OF THE ESTIMATE-SIGMA = 0.98221
SUM OF SQUARED ERRORS-SSE= 96.474
MEAN OF DEPENDENT VARIABLE = 248.96
LOG OF THE LIKELIHOOD FUNCTION = -537.773
ASYMPTOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
NAME COEFFICIENT ERROR -------- P-VALUE CORR. COEFFICIENT AT MEANS
F 0.96189E-01 0.5475E-02 17.57 0.000 0.872 0.5102 0.7427
C 0.30953 0.1799E-01 17.21 0.000 0.868 0.4293 0.3868
CONSTANT -38.361 5.345 -7.177 0.000-0.589 0.0000 -0.1541
|_* Create cross-section dummy variables.
|_* Set the number of cross-sections
|_GEN1 NC=5
|_MATRIX CSDUM=SEAS(100,-NC)
|_* Model with heteroskedasticity, cross-section correlation
|_* and autocorrelation
|_POOL I F C CSDUM / NCROSS=5 NOCONSTANT DN NOMULSIGSQ FULL
POOLED CROSS-SECTION TIME-SERIES ESTIMATION
100 TOTAL OBSERVATIONS
5 CROSS-SECTIONS
20 TIME-PERIODS
DEPENDENT VARIABLE = I
THE DN OPTION IS IN EFFECT
MODEL ASSUMPTIONS:
DIFFERENT ESTIMATED RHO FOR EACH CROSS-SECTION
FULL PHI MATRIX - CROSS-SECTION CORRELATION
OLS COEFFICIENTS
0.10598 0.34666 -76.067 -29.374 -242.17
-57.899 92.539
RHO VECTOR
0.62657 -0.47882E-01 0.85293 0.86680 0.51239
SAME ESTIMATED RHO FOR ALL CROSS-SECTIONS = 0.60606
VARIANCES (DIAGONAL OF PHI MATRIX)
4777.7 209.32 1525.5 258.00 7299.9
PHI MATRIX
4777.7
-397.48 209.32
529.74 247.89 1525.5
-102.05 116.82 542.72 258.00
-1330.0 343.71 473.97 489.59 7299.9
BUSE [1973] R-SQUARE = 0.9170 BUSE RAW-MOMENT R-SQUARE = 0.9720
VARIANCE OF THE ESTIMATE-SIGMA**2 = 0.96814
STANDARD ERROR OF THE ESTIMATE-SIGMA = 0.98394
SUM OF SQUARED ERRORS-SSE= 96.814
MEAN OF DEPENDENT VARIABLE = 248.96
LOG OF THE LIKELIHOOD FUNCTION = -471.786
ASYMPTOTIC
VARIABLE ESTIMATED STANDARD T-RATIO PARTIAL STANDARDIZED ELASTICITY
NAME COEFFICIENT ERROR -------- P-VALUE CORR. COEFFICIENT AT MEANS
F 0.76618E-01 0.8186E-02 9.360 0.000 0.696 0.4064 0.5916
C 0.37943 0.1711E-01 22.18 0.000 0.917 0.5263 0.4741
CSDUM 48.819 51.58 0.9465 0.344 0.098 0.0733 0.0392
CSDUM -11.999 6.358 -1.887 0.059-0.192 -0.0180 -0.0096
CSDUM -215.14 49.25 -4.369 0.000-0.413 -0.3229 -0.1728
CSDUM -47.629 21.03 -2.265 0.024-0.229 -0.0715 -0.0383
CSDUM 138.19 39.38 3.509 0.000 0.342 0.2074 0.1110
|_STOP
[SHAZAM Guide home]
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||